Lidocaine and ATPase inhibitor interaction with the chloroplast envelope.

نویسندگان

  • W Wu
  • G A Berkowitz
چکیده

Photosynthetic capacity of isolated intact chloroplasts is known to be sensitive to K(+) fluxes across the chloroplast envelope. However, little is known about the system of chloroplast envelope proteins that regulate this K(+) movement. The research described in this report focused on characterizing some of the components of this transport system by examining inhibitor effects on chloroplast metabolism. Digitoxin, an inhibitor of membrane-bound Na(+)/K(+) ATPases, was found to reduce stromal K(+) at a range of external K(+) and inhibit photosynthesis. Scatchard plot analysis revealed a specific protein receptor site with a K(m) for digitoxin binding of 13 nanomolar. Studies suggested that the receptor site was on the interior of the envelope. The effect of a class of amine anesthetics that are known to be K(+) channel blockers on chloroplast metabolism was also studied. Under conditions that facilitate low stromal pH and concomitant photosynthetic inhibition, the anesthetic, lidocaine, was found to stimulate photosynthesis. This stimulation was associated with the maintenance of higher stromal K(+). Comparison of the effects on photosynthesis of lidocaine analogs which varied in lipophilicity suggested a lipophilic pathway for anesthetic action. The results of experiments with lidocaine and digitoxin were consistent with the hypothesis that a K(+) channel and a K(+)-pumping envelope ATPase contribute to overall K(+) flux across the chloroplast envelope. Under appropriate assay conditions, photosynthetic capacity of isolated chloroplasts was shown to be much affected by the activity of these putative envelope proteins.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization and localization of the ATPase associated with pea chloroplast envelope membranes.

Chloroplast envelope membranes isolated from Pisum sativum seedlings have been found to contain a Mg-ATPase activity (specific activity 50-175 nanomoles per minute per milligram protein). The ATPase had a broad pH optimum between 7.0 and 9.5. The activity was not inhibited by oligomycin, N,N'-dicyclohexylcarbodiimide, ouabain, or antibodies directed against chloroplast coupling factor 1; nor wa...

متن کامل

K stimulation of ATPase activity associated with the chloroplast inner envelope.

Studies were conducted to characterize ATPase activity associated with purified chloroplast inner envelope preparations from spinach (Spinacea oleracea L.) plants. Comparison of free Mg(2+) and Mg.ATP complex effects on ATPase activity revealed that any Mg(2+) stimulation of activity was likely a function of the use of the Mg.ATP complex as a substrate by the enzyme; free Mg(2+) may be inhibito...

متن کامل

A small ATPase protein of Arabidopsis, TGD3, involved in chloroplast lipid import.

Polar lipid trafficking is essential in eukaryotic cells as membranes of lipid assembly are often distinct from final destination membranes. A striking example is the biogenesis of the photosynthetic membranes (thylakoids) in plastids of plants. Lipid biosynthetic enzymes at the endoplasmic reticulum and the inner and outer plastid envelope membranes are involved. This compartmentalization requ...

متن کامل

O-13: Na+/K+-ATPase Alpha1 Isoform Mediates Ouabain-Induced Expression of Cyclin D1 and Proliferation of Rat Sertoli Cells

Background: Novel roles for the interaction of cardiotonic steroids to Na+/K+-ATPase have been established in recent years. The aim of the present study was to investigate the intracellular signaling events downstream the action of ouabain on Na+/K+-ATPase in Sertoli cell obtained from immature rats. Treatment of Sertoli cells with ouabain (1 μM) induced a rapid and transient increase in the ex...

متن کامل

Chloroplast Inner-Envelope ATPase Acts as a Primary H+ Pump.

The stromal pH of the chloroplast must be maintained higher than that of the surrounding cytosol for photosynthetic carbon assimilation to occur. Experimental evidence demonstrating how this is accomplished in the plant cell is lacking. In the experiments reported here, we studied H+ and K+ flux across membranes of purified chloroplast inner-envelope vesicles. We were able to demonstrate ATP-de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Plant physiology

دوره 97 4  شماره 

صفحات  -

تاریخ انتشار 1991